IBM称旗下的Snap机器学习库比TensorFlow快46倍
消息来源:baojiabao.com 作者: 发布时间:2024-11-24
IBM日前放出话来,说旗下POWER服务器上的机器学习不仅仅是比谷歌云的TensorFlow快而已,而是快了整整46倍。
谷歌软件工程师Andreas Sterbenz今年二月曾发文描述如何利用谷歌云机器学习和TensorFlow进行大规模广告和推荐场景点击预测。
他训练的模型可用来预测Criteo Labs点击日志(http://labs.criteo.com/)上显示广告的点击次数,Criteo Labs点击日志的大小超过1TB,包含来自数百万显示广告的特征值和点击反馈资料。
数据经过预处理(60分钟)后进行实际学习,训练用了60台工作机器和29台参数机器。该模型的训练花了70分钟,评估损失为0.1293。据我们的理解,该数值是准确性的粗略指标。
Sterbenz然后用了不同的建模技术,以获得更好的结果和减少评估损失,这样做花的时间会更长,最后用的模型是一个三期(Epoch)深度神经网络(Epoch指所有训练矢量更新权重的次数),耗时78小时。
IBM对此并不感兴趣,IBM希望证明自己的训练框架在POWER9服务器和GPU上运行时,在基本初始训练方面的性能比谷歌云平台上89台机器还要好。
苏黎世IBM研究中心的Thomas Parnell和Celestine Dunner用了相同的源数据,都是 Criteo Terabyte Click Logs(Criteo TB点击日志),训练样本达42亿个,特征达100万个,用的机器学习模型、逻辑回归都相同,但机器学习库不同。Parnell和Dunner用的是Snap机器学习库(Snap ML)(https://arxiv.org/pdf/1803.06333.pdf)。
他们在四台Power System AC922服务器上用Snap ML进行训练,即是说8个POWER9 CPU和16个Nvidia Tesla V100 GPU。完成时间不是70分钟,而是91.5秒,快了46倍。
他们给出了一张图表,比较了Snap ML、谷歌TensorFlow和另外三个库的表现:
速度是TensorFlow的46倍,这样的改进是不可小视的。二位研究人员将其归因于什么呢?
他们表示,Snap ML的特点是多层次并行性,可以在集群里不同节点之间分配工作负载,因而可以利用加速器单元,而且还可以利用各计算单元的多核并行性
1、首先,将数据分布到集群中的各工作节点上
2、再将节点上的数据分配到并行运行的CPU和加速GPU上
3、数据再被发送到GPU的多个内核,而CPU工作负载用的是多线程
Snap ML对分层算法功能进行嵌套,以利用三个层级上的并行性。
IBM研究人员并没有说TensorFlow未利用并行性,也没有提供Snap ML和TensorFlowz之间在这方面的比较。
但他们确实提到,“我们实行了专门的解决方案,目的是利用GPU的大规模并行架构,同时又不违背GPU内存中的数据局部性,这样就可以避免大量的数据传输开销。”
他们的文章称,用NVLink 2.0界面的AC922服务器比用接到Tesla GPU的PCIe界面的至强服务器(至强黄金版6150 CPU @ 2.70GHz)要快。 文章表示,“对于基于PCIe的设置,我们测到的有效带宽为11.8GB /秒,对于基于NVLink的设置,我们测到的有效带宽为68.1GB /秒。”
发送到GPU的训练数据就会在GPU里处理。 NVLink系统向GPU发送数据块的速度比PCIe系统快得多,时间为55ms,而不是318ms。
IBM团队还表示,“我们将系统用到的算法在用于稀疏数据结构时做了一些新的优化。”
总的来说, Snap ML似乎可以更多地利用Nvidia GPU,与x86服务器产品的PCIe链接比,在NVLink上可以更快地将数据传给Nvidia GPU。我们不知道POWER9 CPU与Xeons的速度相比时如何;就我们所知,IBM尚未公开发布任何POWER9与Xeon SP直接比较的结果。
我们其实也无法说Snap ML比TensorFlow好了多少,只有在相同的硬件上运行Snap ML和TensorFlow做了比较以后才能见分晓。
无论怎么说,时间缩短了46倍的确令人印象深刻,这样的表现给了IBM推动旗下POWER9服务器很大的空间,POWER9服务器可以成为加插Nvidia GPU运行Snap ML库及进行机器学习的场所。
相关文章
- B站怎么炸崩了哔哩哔哩服务器今日怎么又炸挂了?技术团队公开早先原因
2023-03-06 19:05:55
- 苹果iPhoneXS/XR手机电池容量续航最强?答案揭晓
2023-02-19 15:09:54
- 华为荣耀两款机型起内讧:荣耀Play官方价格同价同配该如何选?
2023-02-17 23:21:27
- google谷歌原生系统Pixel3 XL/4/5/6 pro手机价格:刘海屏设计顶配版曾卖6900元
2023-02-17 18:58:09
- 科大讯飞同传同声翻译软件造假 浮夸不能只罚酒三杯
2023-02-17 18:46:15
- 华为mate20pro系列手机首发上市日期价格,屏幕和电池参数配置对比
2023-02-17 18:42:49
- 小米MAX4手机上市日期首发价格 骁龙720打造大屏标准
2023-02-17 18:37:22
- 武汉弘芯遣散!结局是总投资1280亿项目烂尾 光刻机抵押换钱
2023-02-16 15:53:18
- 谷歌GoogleDrive网云盘下载改名“GoogleOne” 容量提升价格优惠
2023-02-16 13:34:45
- 巴斯夫将裁员6000人 众化工巨头裁员潮再度引发关注
2023-02-13 16:49:06
- 人手不足 韵达快递客服回应大量包裹派送异常没有收到
2023-02-07 15:25:20
- 资本微念与李子柒销声匿迹谁赢? 微念公司退出子柒文化股东
2023-02-02 09:24:38
- 三星GalaxyS8 S9 S10系统恢复出厂设置一直卡在正在检查更新怎么办
2023-01-24 10:10:02
- 华为Mate50 RS保时捷最新款顶级手机2022多少钱?1.2万元售价外观图片吊打iPhone14
2023-01-06 20:27:09
- 芯片常见的CPU芯片封装方式 QFP和QFN封装的区别?
2022-12-02 17:25:17
- 华为暂缓招聘停止社招了吗?官方回应来了
2022-11-19 11:53:50
- 热血江湖手游:长枪铁甲 刚猛热血 正派枪客全攻略技能介绍大全
2022-11-16 16:59:09
- 东京把玩了尼康微单相机Z7 尼康Z7现在卖多少钱?
2022-10-22 15:21:55
- 苹果iPhone手机灵动岛大热:安卓灵动岛App应用下载安装量超100万次
2022-10-03 22:13:45
- 苹果美版iPhone可以在中国保修 从哪看怎么查询iPhone的生产日期?
2022-09-22 10:00:07